12 research outputs found

    Improving Third-Party Relaying for LTE-A: A Realistic Simulation Approach

    Full text link
    In this article we propose solutions to diverse conflicts that result from the deployment of the (still immature) relay node (RN) technology in LTE-A networks. These conflicts and their possible solutions have been observed by implementing standard-compliant relay functionalities on the Vienna simulator. As an original experimental approach, we model realistic RN operation, taking into account that transmitters are not active all the time due to half-duplex RN operation. We have rearranged existing elements in the simulator in a manner that emulates RN behavior, rather than implementing a standalone brand-new component for the simulator. We also study analytically some of the issues observed in the interaction between the network and the RNs, to draw conclusions beyond simulation observation. The main observations of this paper are that: ii) Additional time-varying interference management steps are needed, because the LTE-A standard employs a fixed time division between eNB-RN and RN-UE transmissions (typical relay capacity or throughput research models balance them optimally, which is unrealistic nowadays); iiii) There is a trade-off between the time-division constraints of relaying and multi-user diversity; the stricter the constraints on relay scheduling are, the less flexibility schedulers have to exploit channel variation; and iiiiii) Thee standard contains a variety of parameters for relaying configuration, but not all cases of interest are covered.Comment: 17 one-column pages, 9 figures, accepted for publication in IEEE ICC 2014 MW

    Clock and Orientation-Robust Simultaneous Radio Localization and Mapping at Millimeter Wave Bands

    Full text link
    This paper proposes a radio simultaneous location and mapping (radio-SLAM) scheme based on sparse multipath channel estimation. By leveraging sparse channel estimation schemes at millimeter wave bands, namely high resolution estimates of the multipath angle of arrival (AoA), time difference of arrival (TDoA), and angle of departure (AoD), we develop a radio-SLAM algorithm that operates without any requirements of clock synchronization, receiver orientation knowledge, multiple anchor points, or two-way protocols. Thanks to the AoD information obtained via compressed sensing (CS) of the channel, the proposed scheme can estimate the receiver clock offset and orientation from a single anchor transmission, achieving sub-meter accuracy in a realistic typical channel simulation.Comment: This is the author's pre-print version of a paper accepted for presentation in IEEE WCNC 2023, Glasgow, Scotlan

    Twice simulated annealing resource allocation for mmWave multi-hop networks with interference

    Get PDF
    This paper proposes link scheduling and power allocation algorithms for mmWave picocellular integrated access and backhaul networks. The proposed algorithm does not assume that interference is negligible and takes it into account in the solution. The algorithm supports any state of the art multi-user MIMO and hybrid beamforming schemes at the physical layer. The link scheduling and power allocation subproblems are solved using two separate simulated annealing (SA) algorithms which can also be individually combined with other pre-existing suboptimal algorithms for the other subproblem. Particularly, mixed-integer linear programming for fixed power link scheduling, which is optimal in a special interference-free case, is shown to perform much worse than the proposed algorithm. SA link scheduling with water-filling power allocation performs close to the optimal, while reducing power allocation complexity

    Improving Management Performance of P2PSIP for Mobile Sensing in Wireless Overlays

    Get PDF
    Future wireless communications are heading towards an all-Internet Protocol (all-IP) design, and will rely on the Session Initiation Protocol (SIP) to manage services, such as voice over IP (VoIP). The centralized architecture of traditional SIP has numerous disadvantages for mobile ad hoc services that may be possibly overcome by advanced peer-to-peer (P2P) technologies initially developed for the Internet. In the context of mobile sensing, P2PSIP protocols facilitate decentralized and fast communications with sensor-enabled terminals. Nevertheless, in order to make P2PSIP protocols feasible in mobile sensing networks, it is necessary to minimize overhead transmissions for signaling purposes, which reduces the battery lifetime. In this paper, we present a solution to improve the management of wireless overlay networks by defining an adaptive algorithm for the calculation of refresh time. The main advantage of the proposed algorithm is that it takes into account new parameters, such as the delay between nodes, and provides satisfactory performance and reliability levels at a much lower management overhead than previous approaches. The proposed solution can be applied to many structured P2P overlays or P2PSIP protocols. We evaluate it with Kademlia-based distributed hash tables (DHT) and dSIP

    Impact of COVID-19 on Diagnostic Cardiac Procedural Volume in Oceania: The IAEA Non-Invasive Cardiology Protocol Survey on COVID-19 (INCAPS COVID)

    No full text
    Objectives: The INCAPS COVID Oceania study aimed to assess the impact caused by the COVID-19 pandemic on cardiac procedure volume provided in the Oceania region. Methods: A retrospective survey was performed comparing procedure volumes within March 2019 (pre-COVID-19) with April 2020 (during first wave of COVID-19 pandemic). Sixty-three (63) health care facilities within Oceania that perform cardiac diagnostic procedures were surveyed, including a mixture of metropolitan and regional, hospital and outpatient, public and private sites, and 846 facilities outside of Oceania. The percentage change in procedure volume was measured between March 2019 and April 2020, compared by test type and by facility. Results: In Oceania, the total cardiac diagnostic procedure volume was reduced by 52.2% from March 2019 to April 2020, compared to a reduction of 75.9% seen in the rest of the world (p<0.001). Within Oceania sites, this reduction varied significantly between procedure types, but not between types of health care facility. All procedure types (other than stress cardiac magnetic resonance [CMR] and positron emission tomography [PET]) saw significant reductions in volume over this time period (p<0.001). In Oceania, transthoracic echocardiography (TTE) decreased by 51.6%, transoesophageal echocardiography (TOE) by 74.0%, and stress tests by 65% overall, which was more pronounced for stress electrocardiograph (ECG) (81.8%) and stress echocardiography (76.7%) compared to stress single-photon emission computerised tomography (SPECT) (44.3%). Invasive coronary angiography decreased by 36.7% in Oceania. Conclusion: A significant reduction in cardiac diagnostic procedure volume was seen across all facility types in Oceania and was likely a function of recommendations from cardiac societies and directives from government to minimise spread of COVID-19 amongst patients and staff. Longer term evaluation is important to assess for negative patient outcomes which may relate to deferral of usual models of care within cardiology

    Reduction of cardiac imaging tests during the COVID-19 pandemic: The case of Italy. Findings from the IAEA Non-invasive Cardiology Protocol Survey on COVID-19 (INCAPS COVID)

    No full text
    Background: In early 2020, COVID-19 massively hit Italy, earlier and harder than any other European country. This caused a series of strict containment measures, aimed at blocking the spread of the pandemic. Healthcare delivery was also affected when resources were diverted towards care of COVID-19 patients, including intensive care wards. Aim of the study: The aim is assessing the impact of COVID-19 on cardiac imaging in Italy, compare to the Rest of Europe (RoE) and the World (RoW). Methods: A global survey was conducted in May–June 2020 worldwide, through a questionnaire distributed online. The survey covered three periods: March and April 2020, and March 2019. Data from 52 Italian centres, a subset of the 909 participating centres from 108 countries, were analyzed. Results: In Italy, volumes decreased by 67% in March 2020, compared to March 2019, as opposed to a significantly lower decrease (p < 0.001) in RoE and RoW (41% and 40%, respectively). A further decrease from March 2020 to April 2020 summed up to 76% for the North, 77% for the Centre and 86% for the South. When compared to the RoE and RoW, this further decrease from March 2020 to April 2020 in Italy was significantly less (p = 0.005), most likely reflecting the earlier effects of the containment measures in Italy, taken earlier than anywhere else in the West. Conclusions: The COVID-19 pandemic massively hit Italy and caused a disruption of healthcare services, including cardiac imaging studies. This raises concern about the medium- and long-term consequences for the high number of patients who were denied timely diagnoses and the subsequent lifesaving therapies and procedures
    corecore